The greatest common divisor of two recursive functions
Journal of integer sequences, Tome 7 (2004) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let g, h be solutions of a linear recurrence relation of length 2. We show that under some mild assumptions the greatest common divisor of $g(n)$ and $h(n)$ is periodic as a function of $n$ and compute its mean value.
Classification : 11B37, 11B39, 11A05
Keywords: greatest common divisor, recursive functions, periodic functions, mean values
@article{JIS_2004__7_1_a6,
     author = {Schlage-Puchta, Jan-Christoph and Spilker, J\"urgen},
     title = {The greatest common divisor of two recursive functions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a6/}
}
TY  - JOUR
AU  - Schlage-Puchta, Jan-Christoph
AU  - Spilker, Jürgen
TI  - The greatest common divisor of two recursive functions
JO  - Journal of integer sequences
PY  - 2004
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a6/
LA  - en
ID  - JIS_2004__7_1_a6
ER  - 
%0 Journal Article
%A Schlage-Puchta, Jan-Christoph
%A Spilker, Jürgen
%T The greatest common divisor of two recursive functions
%J Journal of integer sequences
%D 2004
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a6/
%G en
%F JIS_2004__7_1_a6
Schlage-Puchta, Jan-Christoph; Spilker, Jürgen. The greatest common divisor of two recursive functions. Journal of integer sequences, Tome 7 (2004) no. 1. http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a6/