Enumeration of concave integer partitions
Journal of integer sequences, Tome 7 (2004) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An integer partition $\lambda\vdash n$ corresponds, via its Ferrers diagram, to an Artinian monomial ideal $I \subset\Bbb C\lbrack x,y\rbrack$ with $\dim_{\Bbb C}\Bbb C\lbrack x,y\rbrack/I=n$. If $\lambda$ corresponds to an integrally closed ideal we call it concave. We study generating functions for the number of concave partitions, unrestricted or with at most $r$ parts.
Classification : 05A17, 13B22
Keywords: integer partitions, monomial ideals, integral closure
@article{JIS_2004__7_1_a3,
     author = {Snellman, Jan and Paulsen, Michael},
     title = {Enumeration of concave integer partitions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a3/}
}
TY  - JOUR
AU  - Snellman, Jan
AU  - Paulsen, Michael
TI  - Enumeration of concave integer partitions
JO  - Journal of integer sequences
PY  - 2004
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a3/
LA  - en
ID  - JIS_2004__7_1_a3
ER  - 
%0 Journal Article
%A Snellman, Jan
%A Paulsen, Michael
%T Enumeration of concave integer partitions
%J Journal of integer sequences
%D 2004
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a3/
%G en
%F JIS_2004__7_1_a3
Snellman, Jan; Paulsen, Michael. Enumeration of concave integer partitions. Journal of integer sequences, Tome 7 (2004) no. 1. http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a3/