Partial complements and transposable dispersions
Journal of integer sequences, Tome 7 (2004) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose $A=\{a(i,j)\},$ for $i\geq 0$ and $j\geq 0,$ is the dispersion of a strictly increasing sequence $r=(r(0),r(1),r(2),\ldots )$ of integers,where $r(0)=1$ and infinitely many postive integers are not terms of $r$. Let $R$ be the set of such sequences, and define $t$ on $R$ by $tr(n)=a(0,n)$for $n\geq 0.$ Let $F$ be the subset of $R$ consisting of sequences $r$satisfying $ttr=r$. The set $F$ is characterized in terms of ordered arrangements of numbers $i+j\theta $. For fixed $i\geq 0,$ the sequence $a(i,j)$, for $j\geq 1,$ is the $(i+1)$st partial complement of $r$. Central to the characterization of $F$ is the role of the families of figurate (or polygonal) number sequences and the centered polygonal number sequences. Finally, it is conjectured that for every $r$ in $R$, the iterates $t^{(2$m$)}r$ converge to a sequence in $F$.
Classification : 11B36, 11B25, 11B37
Keywords: central polygonal numbers, dispersion, interspersion, Farey sequence, Farey tree, fractal sequence, partial complement, polygonal numbers, rank array, rank sequence
@article{JIS_2004__7_1_a1,
     author = {Kimberling, Clark and Brown, John E.},
     title = {Partial complements and transposable dispersions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a1/}
}
TY  - JOUR
AU  - Kimberling, Clark
AU  - Brown, John E.
TI  - Partial complements and transposable dispersions
JO  - Journal of integer sequences
PY  - 2004
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a1/
LA  - en
ID  - JIS_2004__7_1_a1
ER  - 
%0 Journal Article
%A Kimberling, Clark
%A Brown, John E.
%T Partial complements and transposable dispersions
%J Journal of integer sequences
%D 2004
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a1/
%G en
%F JIS_2004__7_1_a1
Kimberling, Clark; Brown, John E. Partial complements and transposable dispersions. Journal of integer sequences, Tome 7 (2004) no. 1. http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a1/