Counting stabilized-interval-free permutations
Journal of integer sequences, Tome 7 (2004) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A stabilized-interval-free (SIF) permutation on $[n] = { 1,2,\dots ,n }$ is one that does not stabilize any proper subinterval of $[n]$. By presenting a decomposition of an arbitrary permutation into a list of SIF permutations, we show that the generating function $A(x)$ for SIF permutations satisfies the defining property: [x^n-1] $A(x)^n = n$! . We also give an efficient recurrence for counting SIF permutations.
Classification : 05A05, 05A15
Keywords: stabilized-interval-free, connected, indecomposable, noncrossing partition, murasaki diagram, Dyck path
@article{JIS_2004__7_1_a0,
     author = {Callan, David},
     title = {Counting stabilized-interval-free permutations},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a0/}
}
TY  - JOUR
AU  - Callan, David
TI  - Counting stabilized-interval-free permutations
JO  - Journal of integer sequences
PY  - 2004
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a0/
LA  - en
ID  - JIS_2004__7_1_a0
ER  - 
%0 Journal Article
%A Callan, David
%T Counting stabilized-interval-free permutations
%J Journal of integer sequences
%D 2004
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a0/
%G en
%F JIS_2004__7_1_a0
Callan, David. Counting stabilized-interval-free permutations. Journal of integer sequences, Tome 7 (2004) no. 1. http://geodesic.mathdoc.fr/item/JIS_2004__7_1_a0/