Characterizing the sum of two cubes
Journal of integer sequences, Tome 6 (2003) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An intrinsic characterization of positive integers which can be represented as the sum or difference of two cubes is given. Every integer has a smallest multiple which is a sum of two cubes and such that the multiple, in the form of an iterated composite function of the integer, is eventually periodic with period one or two. The representation of any integer as the sum of two cubes to a fixed modulus is always possible if and only if the modulus is not divisible by 7 or 9.
Classification : 11A07, 11B13, 11B50, 11D25, 11D79, 11P05
Keywords: sum of two cubes, Diophantine equation (Concerned with sequence
@article{JIS_2003__6_4_a4,
     author = {Broughan, Kevin A.},
     title = {Characterizing the sum of two cubes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a4/}
}
TY  - JOUR
AU  - Broughan, Kevin A.
TI  - Characterizing the sum of two cubes
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a4/
LA  - en
ID  - JIS_2003__6_4_a4
ER  - 
%0 Journal Article
%A Broughan, Kevin A.
%T Characterizing the sum of two cubes
%J Journal of integer sequences
%D 2003
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a4/
%G en
%F JIS_2003__6_4_a4
Broughan, Kevin A. Characterizing the sum of two cubes. Journal of integer sequences, Tome 6 (2003) no. 4. http://geodesic.mathdoc.fr/item/JIS_2003__6_4_a4/