Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne primes
Journal of integer sequences, Tome 6 (2003) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Constants of the form $$ C = \sum_{k=0}^\infty \frac{p(k)}{q(k)b^k} $$ where $p$ and $q$ are integer polynomials, $\deg p \deg q$, and $p(k)/q(k)$ is non-singular for non-negative $k$ and $b\geq 2$, have special properties. The $n$th digit (base $b$) of $C$ may be calculated in (essentially) linear time without computing its preceding digits, and constants of this form are conjectured to be either rational or normal to base $b$. This paper constructs such formulae for constants of the form $\log p$ for many primes $p$. This holds for all Gaussian-Mersenne primes and for a larger class of "generalized Gaussian-Mersenne primes". Finally, connections to Aurifeuillian factorizations are made.
Classification : 11Y05, 11A41, 11B99, 11T22, 11Y60
Keywords: primes, Gaussian-mersenne, BBP, aurifeuillian
@article{JIS_2003__6_3_a3,
     author = {Chamberland, Marc},
     title = {Binary {BBP-formulae} for logarithms and generalized {Gaussian-Mersenne} primes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_3_a3/}
}
TY  - JOUR
AU  - Chamberland, Marc
TI  - Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne primes
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_3_a3/
LA  - en
ID  - JIS_2003__6_3_a3
ER  - 
%0 Journal Article
%A Chamberland, Marc
%T Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne primes
%J Journal of integer sequences
%D 2003
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_3_a3/
%G en
%F JIS_2003__6_3_a3
Chamberland, Marc. Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne primes. Journal of integer sequences, Tome 6 (2003) no. 3. http://geodesic.mathdoc.fr/item/JIS_2003__6_3_a3/