Sequences realized as Parker vectors of oligomorphic permutation groups
Journal of integer sequences, Tome 6 (2003) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The purpose of this paper is to study the Parker vectors (in fact, sequences) of several known classes of oligomorphic groups. The Parker sequence of a group $G$ is the sequence that counts the number of $G$-orbits on cycles appearing in elements of $G$. This work was inspired by Cameron's paper on the sequences realized by counting orbits on $k$-sets and $k$-tuples.
Classification : 20B07, 05A15
Keywords: oligomorphic permutation groups, action on cycles, parker vectors, circulant relational structures (Concerned with sequences A023022
@article{JIS_2003__6_1_a6,
     author = {Gewurz, Daniele A. and Merola, Francesca},
     title = {Sequences realized as {Parker} vectors of oligomorphic permutation groups},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a6/}
}
TY  - JOUR
AU  - Gewurz, Daniele A.
AU  - Merola, Francesca
TI  - Sequences realized as Parker vectors of oligomorphic permutation groups
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a6/
LA  - en
ID  - JIS_2003__6_1_a6
ER  - 
%0 Journal Article
%A Gewurz, Daniele A.
%A Merola, Francesca
%T Sequences realized as Parker vectors of oligomorphic permutation groups
%J Journal of integer sequences
%D 2003
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a6/
%G en
%F JIS_2003__6_1_a6
Gewurz, Daniele A.; Merola, Francesca. Sequences realized as Parker vectors of oligomorphic permutation groups. Journal of integer sequences, Tome 6 (2003) no. 1. http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a6/