A note on arithmetic progressions on elliptic curves
Journal of integer sequences, Tome 6 (2003) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Andrew Bremner (Experiment. Math. 8 (1999), 409-413) has described a technique for producing infinite families of elliptic curves containing length 7 and length 8 arithmetic progressions. This note describes another way to produce infinite families of elliptic curves containing length 7 and length 8 arithmetic progressions. We illustrate how the technique articulated here gives an easy way to produce an elliptic curve containing a length 12 progression and an infinite family of elliptic curves containing a length 9 progression, with the caveat that these curves are not in Weierstrass form.
Classification : 11G05, 11B25
Keywords: elliptic curves, arithmetic progression
@article{JIS_2003__6_1_a5,
     author = {Campbell, Garikai},
     title = {A note on arithmetic progressions on elliptic curves},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a5/}
}
TY  - JOUR
AU  - Campbell, Garikai
TI  - A note on arithmetic progressions on elliptic curves
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a5/
LA  - en
ID  - JIS_2003__6_1_a5
ER  - 
%0 Journal Article
%A Campbell, Garikai
%T A note on arithmetic progressions on elliptic curves
%J Journal of integer sequences
%D 2003
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a5/
%G en
%F JIS_2003__6_1_a5
Campbell, Garikai. A note on arithmetic progressions on elliptic curves. Journal of integer sequences, Tome 6 (2003) no. 1. http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a5/