The integer sequence A002620 and upper antagonistic functions
Journal of integer sequences, Tome 6 (2003) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper shows the equivalence of various integer functions to the integer sequence A002620, and to the maximum of the product of certain pairs of combinatorial or graphical invariants. This maximum is the same as the upper bound of the Nordhaus-Gaddum inequality and related to Turán's number. The computer algebra program MAPLE is used for solutions of linear recurrence and differential equations in some of the proofs. Chapter three of The Encyclopedia of Integer Sequences by Sloane and Plouffe describes the usefulness of apparently different expressions of an integer sequence.
Classification : 05A15, 05A18, 05C35, 05C69, 05E10, 05D05, 06B99
Keywords: antagonistic functions, graph theory, domination number, Maple, nordhaus-gaddum inequality, turán's number, partitions of integers, Young tableaux, Robinson-Schensted-knuth algorithm (Concerned with sequence
@article{JIS_2003__6_1_a0,
     author = {Speed, Sam E.},
     title = {The integer sequence {A002620} and upper antagonistic functions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a0/}
}
TY  - JOUR
AU  - Speed, Sam E.
TI  - The integer sequence A002620 and upper antagonistic functions
JO  - Journal of integer sequences
PY  - 2003
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a0/
LA  - en
ID  - JIS_2003__6_1_a0
ER  - 
%0 Journal Article
%A Speed, Sam E.
%T The integer sequence A002620 and upper antagonistic functions
%J Journal of integer sequences
%D 2003
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a0/
%G en
%F JIS_2003__6_1_a0
Speed, Sam E. The integer sequence A002620 and upper antagonistic functions. Journal of integer sequences, Tome 6 (2003) no. 1. http://geodesic.mathdoc.fr/item/JIS_2003__6_1_a0/