Tau numbers: a partial proof of a conjecture and other results
Journal of integer sequences, Tome 5 (2002) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A positive $n$ is called a tau number if $tau(n)$ divides $n$, where tau is the number-of-divisors function. Colton conjectured that the number of tau numbers = $n$ is at least 1/$2 pi(n)$. In this paper I show that Colton's conjecture is true for all sufficiently large $n$. I also prove various other results about tau numbers and their generalizations .
Classification : 11B05, 11A25
Keywords: tau number, number-of-divisors function 16 (Concerned with sequence
@article{JIS_2002__5_2_a0,
     author = {Zelinsky, Joshua},
     title = {Tau numbers: a partial proof of a conjecture and other results},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a0/}
}
TY  - JOUR
AU  - Zelinsky, Joshua
TI  - Tau numbers: a partial proof of a conjecture and other results
JO  - Journal of integer sequences
PY  - 2002
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a0/
LA  - en
ID  - JIS_2002__5_2_a0
ER  - 
%0 Journal Article
%A Zelinsky, Joshua
%T Tau numbers: a partial proof of a conjecture and other results
%J Journal of integer sequences
%D 2002
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a0/
%G en
%F JIS_2002__5_2_a0
Zelinsky, Joshua. Tau numbers: a partial proof of a conjecture and other results. Journal of integer sequences, Tome 5 (2002) no. 2. http://geodesic.mathdoc.fr/item/JIS_2002__5_2_a0/