On partition functions and divisor sums
Journal of integer sequences, Tome 5 (2002) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let n, r be natural numbers, with $r >= 2$. We present convolution-type formulas for the number of partitions of $n$ that are (1) not divisible by $r$; (2) coprime to $r$. Another result obtained is a formula for the sum of the odd divisors of $n$.
Classification : 11P81
Keywords: partitions, divisor sums, Lambert series
@article{JIS_2002__5_1_a6,
     author = {Robbins, Neville},
     title = {On partition functions and divisor sums},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a6/}
}
TY  - JOUR
AU  - Robbins, Neville
TI  - On partition functions and divisor sums
JO  - Journal of integer sequences
PY  - 2002
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a6/
LA  - en
ID  - JIS_2002__5_1_a6
ER  - 
%0 Journal Article
%A Robbins, Neville
%T On partition functions and divisor sums
%J Journal of integer sequences
%D 2002
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a6/
%G en
%F JIS_2002__5_1_a6
Robbins, Neville. On partition functions and divisor sums. Journal of integer sequences, Tome 5 (2002) no. 1. http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a6/