Domino tilings and products of Fibonacci and Pell numbers
Journal of integer sequences, Tome 5 (2002) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this brief note, we prove a result which was "accidentally" found thanks to Neil Sloane's Online Encyclopedia of Integer Sequences. Namely, we prove via elementary techniques that the number of domino tilings of the graph W_4 x P_n-1 equals f_n p_n, the product of the n'th Fibonacci number and the n'th Pell number.
Classification : 11B37, 11B39
Keywords: domino tilings, Fibonacci numbers, pell numbers (Concerned with sequences , , and
@article{JIS_2002__5_1_a5,
     author = {Sellers, James A.},
     title = {Domino tilings and products of {Fibonacci} and {Pell} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a5/}
}
TY  - JOUR
AU  - Sellers, James A.
TI  - Domino tilings and products of Fibonacci and Pell numbers
JO  - Journal of integer sequences
PY  - 2002
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a5/
LA  - en
ID  - JIS_2002__5_1_a5
ER  - 
%0 Journal Article
%A Sellers, James A.
%T Domino tilings and products of Fibonacci and Pell numbers
%J Journal of integer sequences
%D 2002
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a5/
%G en
%F JIS_2002__5_1_a5
Sellers, James A. Domino tilings and products of Fibonacci and Pell numbers. Journal of integer sequences, Tome 5 (2002) no. 1. http://geodesic.mathdoc.fr/item/JIS_2002__5_1_a5/