Prime Pythagorean triangles
Journal of integer sequences, Tome 4 (2001) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A prime Pythagorean triangle has three integer sides of which the hypotenuse and one leg are primes. In this article we investigate their properties and distribution. We are also interested in finding chains of such triangles, where the hypotenuse of one triangle is the leg of the next in the sequence. We exhibit a chain of seven prime Pythagorean triangles and we include a brief discussion of primality proofs for the larger elements (up to 2310 digits) of the associated set of eight primes.
Classification : 11A41
Keywords: Pythagorean triangles, prime numbers, primality proving
@article{JIS_2001__4_2_a2,
     author = {Dubner, Harvey and Forbes, Tony},
     title = {Prime {Pythagorean} triangles},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a2/}
}
TY  - JOUR
AU  - Dubner, Harvey
AU  - Forbes, Tony
TI  - Prime Pythagorean triangles
JO  - Journal of integer sequences
PY  - 2001
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a2/
LA  - en
ID  - JIS_2001__4_2_a2
ER  - 
%0 Journal Article
%A Dubner, Harvey
%A Forbes, Tony
%T Prime Pythagorean triangles
%J Journal of integer sequences
%D 2001
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a2/
%G en
%F JIS_2001__4_2_a2
Dubner, Harvey; Forbes, Tony. Prime Pythagorean triangles. Journal of integer sequences, Tome 4 (2001) no. 2. http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a2/