Permutations with inversions
Journal of integer sequences, Tome 4 (2001) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The number of inversions in a random permutation is a way to measure the extent to which the permutation is "out of order". Let $I_{n}(k)$ denote the number of permutations of length n with k inversions. This paper gives asymptotic formulae for the sequences ${I_{n+k}(n)$, n=1,2,$\dots }$ for fixed k.
@article{JIS_2001__4_2_a0,
     author = {Margolius, Barbara H.},
     title = {Permutations with inversions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a0/}
}
TY  - JOUR
AU  - Margolius, Barbara H.
TI  - Permutations with inversions
JO  - Journal of integer sequences
PY  - 2001
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a0/
LA  - en
ID  - JIS_2001__4_2_a0
ER  - 
%0 Journal Article
%A Margolius, Barbara H.
%T Permutations with inversions
%J Journal of integer sequences
%D 2001
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a0/
%G en
%F JIS_2001__4_2_a0
Margolius, Barbara H. Permutations with inversions. Journal of integer sequences, Tome 4 (2001) no. 2. http://geodesic.mathdoc.fr/item/JIS_2001__4_2_a0/