Hankel matrices and lattice paths
Journal of integer sequences, Tome 4 (2001) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let H be the Hankel matrix formed from a sequence of real numbers S = a_0 = 1, a_1, a_2, a_3, $\dots $, and let L denote the lower triangular matrix obtained from the Gaussian column reduction of H. This paper gives a matrix-theoretic proof that the associated Stieltjes matrix S_L is a tri-diagonal matrix. It is also shown that for any sequence (of nonzero real numbers) T = d_0 = 1, d_1, d_2, d_3, $\dots $ there are infinitely many sequences such that the determinant sequence of the Hankel matrix formed from those sequences is T.
@article{JIS_2001__4_1_a4,
     author = {Woan, Wen-Jin},
     title = {Hankel matrices and lattice paths},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a4/}
}
TY  - JOUR
AU  - Woan, Wen-Jin
TI  - Hankel matrices and lattice paths
JO  - Journal of integer sequences
PY  - 2001
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a4/
LA  - en
ID  - JIS_2001__4_1_a4
ER  - 
%0 Journal Article
%A Woan, Wen-Jin
%T Hankel matrices and lattice paths
%J Journal of integer sequences
%D 2001
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a4/
%G en
%F JIS_2001__4_1_a4
Woan, Wen-Jin. Hankel matrices and lattice paths. Journal of integer sequences, Tome 4 (2001) no. 1. http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a4/