The Hankel transform and some of its properties
Journal of integer sequences, Tome 4 (2001) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Hankel transform of an integer sequence is defined and some of its properties discussed. It is shown that the Hankel transform of a sequence S is the same as the Hankel transform of the binomial or invert transform of S. If H is the Hankel matrix of a sequence and H = LU is the LU decomposition of H, the behavior of the first super-diagonal of U under the binomial or invert transform is also studied. This leads to a simple classification scheme for certain integer sequences.
@article{JIS_2001__4_1_a2,
     author = {Layman, John W.},
     title = {The {Hankel} transform and some of its properties},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a2/}
}
TY  - JOUR
AU  - Layman, John W.
TI  - The Hankel transform and some of its properties
JO  - Journal of integer sequences
PY  - 2001
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a2/
LA  - en
ID  - JIS_2001__4_1_a2
ER  - 
%0 Journal Article
%A Layman, John W.
%T The Hankel transform and some of its properties
%J Journal of integer sequences
%D 2001
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a2/
%G en
%F JIS_2001__4_1_a2
Layman, John W. The Hankel transform and some of its properties. Journal of integer sequences, Tome 4 (2001) no. 1. http://geodesic.mathdoc.fr/item/JIS_2001__4_1_a2/