Some easily derivable integer sequences
Journal of integer sequences, Tome 3 (2000) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We propose and discuss several simple ways of obtaining new enumerative sequences from existing ones. For instance, the number of graphs considered up to the action of an involutory transformation is expressible as the semi-sum of the total number of such graphs and the number of graphs invariant under the involution. Another, less familiar idea concerns even- and odd-edged graphs: the difference between their numbers often proves to be a very simple quantity (such as n!). More than 30 new sequences will be constructed by these methods.
Classification : 05C30, 05A19
@article{JIS_2000__3_2_a3,
     author = {Liskovets, Valery A.},
     title = {Some easily derivable integer sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a3/}
}
TY  - JOUR
AU  - Liskovets, Valery A.
TI  - Some easily derivable integer sequences
JO  - Journal of integer sequences
PY  - 2000
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a3/
LA  - en
ID  - JIS_2000__3_2_a3
ER  - 
%0 Journal Article
%A Liskovets, Valery A.
%T Some easily derivable integer sequences
%J Journal of integer sequences
%D 2000
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a3/
%G en
%F JIS_2000__3_2_a3
Liskovets, Valery A. Some easily derivable integer sequences. Journal of integer sequences, Tome 3 (2000) no. 2. http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a3/