Jacobsthal numbers and alternating sign matrices
Journal of integer sequences, Tome 3 (2000) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $A(n)$ denote the number of n$\times n$ alternating sign matrices and $J_{m}$ the $m^{th}$ Jacobsthal number. It is known that $A(n) = n-1$ Õ $l = 0 (3l+1)! (n+l)$! . The values of $A(n)$ are in general highly composite. The goal of this paper is to prove that $A(n)$ is odd if and only if n is a Jacobsthal number, thus showing that $A(n)$ is odd infinitely often.
Classification : 05A10, 15A15
Keywords: alternating sign matrices, jacobsthal numbers
@article{JIS_2000__3_2_a2,
     author = {Frey, Darrin D. and Sellers, James A.},
     title = {Jacobsthal numbers and alternating sign matrices},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a2/}
}
TY  - JOUR
AU  - Frey, Darrin D.
AU  - Sellers, James A.
TI  - Jacobsthal numbers and alternating sign matrices
JO  - Journal of integer sequences
PY  - 2000
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a2/
LA  - en
ID  - JIS_2000__3_2_a2
ER  - 
%0 Journal Article
%A Frey, Darrin D.
%A Sellers, James A.
%T Jacobsthal numbers and alternating sign matrices
%J Journal of integer sequences
%D 2000
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a2/
%G en
%F JIS_2000__3_2_a2
Frey, Darrin D.; Sellers, James A. Jacobsthal numbers and alternating sign matrices. Journal of integer sequences, Tome 3 (2000) no. 2. http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a2/