Counting set covers and split graphs
Journal of integer sequences, Tome 3 (2000) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A bijection between split graphs and minimal covers of a set by subsets is presented. As the enumeration problem for such minimal covers has been solved, this implies that split graphs can also be enumerated.
@article{JIS_2000__3_2_a0,
     author = {Royle, Gordon F.},
     title = {Counting set covers and split graphs},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a0/}
}
TY  - JOUR
AU  - Royle, Gordon F.
TI  - Counting set covers and split graphs
JO  - Journal of integer sequences
PY  - 2000
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a0/
LA  - en
ID  - JIS_2000__3_2_a0
ER  - 
%0 Journal Article
%A Royle, Gordon F.
%T Counting set covers and split graphs
%J Journal of integer sequences
%D 2000
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a0/
%G en
%F JIS_2000__3_2_a0
Royle, Gordon F. Counting set covers and split graphs. Journal of integer sequences, Tome 3 (2000) no. 2. http://geodesic.mathdoc.fr/item/JIS_2000__3_2_a0/