The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3
Journal for geometry and graphics, Tome 28 (2024) no. 1, pp. 1-18
Cet article a éte moissonné depuis la source Heldermann Verlag
In the Lorentz-Heisenberg space $\mathbb{H}_3$ endowed with flat metric $g_3$, a translation surface is parametrized by $r(x,y) = \gamma_1(x) * \gamma_2(y)$, where $\gamma_1$ and $\gamma_2$ are two planar curves lying in planes, which are not orthogonal. In this article, we classify translation surfaces in $\mathbb{H}_3$, with vanishing Gaussian curvature in Lorentz-Heisenberg space $\mathbb{H}_3$.
Classification :
53A10, 53C30, 53C50, 53C42
Mots-clés : Gaussian curvature, Lorentz Heisenberg space, first fundamental form, second fundamental form, translation surface, flat surface
Mots-clés : Gaussian curvature, Lorentz Heisenberg space, first fundamental form, second fundamental form, translation surface, flat surface
@article{JGG_2024_28_1_JGG_2024_28_1_a0,
author = {R. Medjati and S. Taifour and H. Zoubir },
title = {The {Flat} {Translation} {Surfaces} in the {3-Dimensional} {Lorentz} {Heisenberg} {Group} {H\protect\textsubscript{3}}},
journal = {Journal for geometry and graphics},
pages = {1--18},
year = {2024},
volume = {28},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/}
}
TY - JOUR AU - R. Medjati AU - S. Taifour AU - H. Zoubir TI - The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3 JO - Journal for geometry and graphics PY - 2024 SP - 1 EP - 18 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/ ID - JGG_2024_28_1_JGG_2024_28_1_a0 ER -
%0 Journal Article %A R. Medjati %A S. Taifour %A H. Zoubir %T The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3 %J Journal for geometry and graphics %D 2024 %P 1-18 %V 28 %N 1 %U http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/ %F JGG_2024_28_1_JGG_2024_28_1_a0
R. Medjati; S. Taifour; H. Zoubir . The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3. Journal for geometry and graphics, Tome 28 (2024) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/