The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3
Journal for geometry and graphics, Tome 28 (2024) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Heldermann Verlag

In the Lorentz-Heisenberg space $\mathbb{H}_3$ endowed with flat metric $g_3$, a translation surface is parametrized by $r(x,y) = \gamma_1(x) * \gamma_2(y)$, where $\gamma_1$ and $\gamma_2$ are two planar curves lying in planes, which are not orthogonal. In this article, we classify translation surfaces in $\mathbb{H}_3$, with vanishing Gaussian curvature in Lorentz-Heisenberg space $\mathbb{H}_3$.
Classification : 53A10, 53C30, 53C50, 53C42
Mots-clés : Gaussian curvature, Lorentz Heisenberg space, first fundamental form, second fundamental form, translation surface, flat surface
@article{JGG_2024_28_1_JGG_2024_28_1_a0,
     author = {R. Medjati and S. Taifour and H. Zoubir },
     title = {The {Flat} {Translation} {Surfaces} in the {3-Dimensional} {Lorentz} {Heisenberg} {Group} {H\protect\textsubscript{3}}},
     journal = {Journal for geometry and graphics},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     url = {http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/}
}
TY  - JOUR
AU  - R. Medjati
AU  - S. Taifour
AU  - H. Zoubir 
TI  - The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3
JO  - Journal for geometry and graphics
PY  - 2024
SP  - 1
EP  - 18
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/
ID  - JGG_2024_28_1_JGG_2024_28_1_a0
ER  - 
%0 Journal Article
%A R. Medjati
%A S. Taifour
%A H. Zoubir 
%T The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3
%J Journal for geometry and graphics
%D 2024
%P 1-18
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/
%F JGG_2024_28_1_JGG_2024_28_1_a0
R. Medjati; S. Taifour; H. Zoubir . The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3. Journal for geometry and graphics, Tome 28 (2024) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/JGG_2024_28_1_JGG_2024_28_1_a0/