A Property of the Fermat-Torricelli Point for Tetrahedra and a new Characterization for Isosceles Tetrahedra
Journal for geometry and graphics, Tome 27 (2023) no. 2, pp. 187-193
Cet article a éte moissonné depuis la source Heldermann Verlag
If the Fermat-Torricelli point $A_0$ is strictly inside a tetrahedron $A_1A_2A_3A_4$, we prove that the angle bisectors of $\angle A_iA_0A_j$, for $i \neq j$, $i,j = 1,2,3,4$ form three bisecting lines that meet perpendicular at $A_0$. From this, we derive a new characterization of isosceles tetrahedra.
Classification :
51M14, 51M20, 51M16
Mots-clés : Fermat-Torricelli point, angle bisector, isosceles tetrahedra
Mots-clés : Fermat-Torricelli point, angle bisector, isosceles tetrahedra
@article{JGG_2023_27_2_JGG_2023_27_2_a6,
author = {A. N. Zachos },
title = {A {Property} of the {Fermat-Torricelli} {Point} for {Tetrahedra} and a new {Characterization} for {Isosceles} {Tetrahedra}},
journal = {Journal for geometry and graphics},
pages = {187--193},
year = {2023},
volume = {27},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a6/}
}
TY - JOUR AU - A. N. Zachos TI - A Property of the Fermat-Torricelli Point for Tetrahedra and a new Characterization for Isosceles Tetrahedra JO - Journal for geometry and graphics PY - 2023 SP - 187 EP - 193 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a6/ ID - JGG_2023_27_2_JGG_2023_27_2_a6 ER -
%0 Journal Article %A A. N. Zachos %T A Property of the Fermat-Torricelli Point for Tetrahedra and a new Characterization for Isosceles Tetrahedra %J Journal for geometry and graphics %D 2023 %P 187-193 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a6/ %F JGG_2023_27_2_JGG_2023_27_2_a6
A. N. Zachos . A Property of the Fermat-Torricelli Point for Tetrahedra and a new Characterization for Isosceles Tetrahedra. Journal for geometry and graphics, Tome 27 (2023) no. 2, pp. 187-193. http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a6/