On Spiral Structures in Tilings
Journal for geometry and graphics, Tome 27 (2023) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Heldermann Verlag

We investigate the existence of spiral structure in certain types of tilings. Following a question posed by Branko Gr�nbaum, it is demonstrated that all Archimedean tilings can be partitioned in a spiral like manner thereby fulfilling a definition given in 2017 for this visual effect. Furthermore, to show that this is not possible for every arbitrary periodic tiling, non "spirable" examples are constructed in the sense of this definition. Lastly, an intuitive result for one-armed spirals is established: one-armed spirals and periodic tilings cannot coexist.
Classification : 52C20
Mots-clés : Tiling, spiral tiling, periodic, one-armed spiral
@article{JGG_2023_27_2_JGG_2023_27_2_a3,
     author = {J. C. Duero and B. Klaassen },
     title = {On {Spiral} {Structures} in {Tilings}},
     journal = {Journal for geometry and graphics},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     url = {http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a3/}
}
TY  - JOUR
AU  - J. C. Duero
AU  - B. Klaassen 
TI  - On Spiral Structures in Tilings
JO  - Journal for geometry and graphics
PY  - 2023
SP  - 159
EP  - 169
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a3/
ID  - JGG_2023_27_2_JGG_2023_27_2_a3
ER  - 
%0 Journal Article
%A J. C. Duero
%A B. Klaassen 
%T On Spiral Structures in Tilings
%J Journal for geometry and graphics
%D 2023
%P 159-169
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a3/
%F JGG_2023_27_2_JGG_2023_27_2_a3
J. C. Duero; B. Klaassen . On Spiral Structures in Tilings. Journal for geometry and graphics, Tome 27 (2023) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/JGG_2023_27_2_JGG_2023_27_2_a3/