Enforcing Surface Rigidity by Shadow-Line Constraints
Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 59-67.

Voir la notice de l'article provenant de la source Heldermann Verlag

A surface is under pressure and deforming. Is it bending without or with deforming the surface-metric? This is an important question in many applications. Mathematical concepts to deal with this kind of problems are differential geometry and infinitesimal bendings. Shadow-curves are an intuitive visualization tool. We prove in this paper that as long as the shadow-lines stay stationary during the deformation the surface is infinitesimally rigid.
Classification : 65D17, 65D18
Mots-clés : Differential geometry, computer aided design, computer graphics, computational geometry
@article{JGG_2023_27_1_JGG_2023_27_1_a5,
     author = {H. Hagen },
     title = {Enforcing {Surface} {Rigidity} by {Shadow-Line} {Constraints}},
     journal = {Journal for geometry and graphics},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     url = {http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a5/}
}
TY  - JOUR
AU  - H. Hagen 
TI  - Enforcing Surface Rigidity by Shadow-Line Constraints
JO  - Journal for geometry and graphics
PY  - 2023
SP  - 59
EP  - 67
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a5/
ID  - JGG_2023_27_1_JGG_2023_27_1_a5
ER  - 
%0 Journal Article
%A H. Hagen 
%T Enforcing Surface Rigidity by Shadow-Line Constraints
%J Journal for geometry and graphics
%D 2023
%P 59-67
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a5/
%F JGG_2023_27_1_JGG_2023_27_1_a5
H. Hagen . Enforcing Surface Rigidity by Shadow-Line Constraints. Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 59-67. http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a5/