Local Geometry of Polyhedra and Cauchy’s Rigidity Theorem
Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 39-46.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a formula that relates internal and external angles of polyhedra with some geometric applications, and apply it for a new proof of the celebrated Cauchy�s rigidity theorem.
Classification : 52C25, 51M20
Mots-clés : Local geometry, polyhedra, Cauchy�s rigidity theorem, new proof
@article{JGG_2023_27_1_JGG_2023_27_1_a3,
     author = {P. Honvault },
     title = {Local {Geometry} of {Polyhedra} and {Cauchy{\textquoteright}s} {Rigidity} {Theorem}},
     journal = {Journal for geometry and graphics},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     url = {http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a3/}
}
TY  - JOUR
AU  - P. Honvault 
TI  - Local Geometry of Polyhedra and Cauchy’s Rigidity Theorem
JO  - Journal for geometry and graphics
PY  - 2023
SP  - 39
EP  - 46
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a3/
ID  - JGG_2023_27_1_JGG_2023_27_1_a3
ER  - 
%0 Journal Article
%A P. Honvault 
%T Local Geometry of Polyhedra and Cauchy’s Rigidity Theorem
%J Journal for geometry and graphics
%D 2023
%P 39-46
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a3/
%F JGG_2023_27_1_JGG_2023_27_1_a3
P. Honvault . Local Geometry of Polyhedra and Cauchy’s Rigidity Theorem. Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a3/