Local Geometry of Polyhedra and Cauchy’s Rigidity Theorem
Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 39-46
Cet article a éte moissonné depuis la source Heldermann Verlag
We give a formula that relates internal and external angles of polyhedra with some geometric applications, and apply it for a new proof of the celebrated Cauchy�s rigidity theorem.
Classification :
52C25, 51M20
Mots-clés : Local geometry, polyhedra, Cauchy�s rigidity theorem, new proof
Mots-clés : Local geometry, polyhedra, Cauchy�s rigidity theorem, new proof
@article{JGG_2023_27_1_JGG_2023_27_1_a3,
author = {P. Honvault },
title = {Local {Geometry} of {Polyhedra} and {Cauchy{\textquoteright}s} {Rigidity} {Theorem}},
journal = {Journal for geometry and graphics},
pages = {39--46},
year = {2023},
volume = {27},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a3/}
}
P. Honvault . Local Geometry of Polyhedra and Cauchy’s Rigidity Theorem. Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a3/