Volume of an n-Dimensional Polyhedron: Revisited
Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 1-9
Cet article a éte moissonné depuis la source Heldermann Verlag
The paper presents a computational technique to determine the volume of an n-dimensional polyhedron. Initially, the volume is computed for an n-dimensional simplex which is used later to calculate the volume of an arbitrary polytope using the method of signed simplex decomposition. A recursive algorithm is used to compute the volume in n dimensions. The proposed algorithm not only calculates the volume efficiently but also avoids complex calculations in higher dimensions.
Classification :
51M04, 51M05
Mots-clés : Cayley-Menger determinant, simplex, inradius, circumradius, face angles
Mots-clés : Cayley-Menger determinant, simplex, inradius, circumradius, face angles
@article{JGG_2023_27_1_JGG_2023_27_1_a0,
author = {A. Bhattacharya and K. Kumar Dubey and B. Mondal },
title = {Volume of an {n-Dimensional} {Polyhedron:} {Revisited}},
journal = {Journal for geometry and graphics},
pages = {1--9},
year = {2023},
volume = {27},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a0/}
}
TY - JOUR AU - A. Bhattacharya AU - K. Kumar Dubey AU - B. Mondal TI - Volume of an n-Dimensional Polyhedron: Revisited JO - Journal for geometry and graphics PY - 2023 SP - 1 EP - 9 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a0/ ID - JGG_2023_27_1_JGG_2023_27_1_a0 ER -
A. Bhattacharya; K. Kumar Dubey; B. Mondal . Volume of an n-Dimensional Polyhedron: Revisited. Journal for geometry and graphics, Tome 27 (2023) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/JGG_2023_27_1_JGG_2023_27_1_a0/