From Permutation Points to Permutation Cubics
Journal for geometry and graphics, Tome 26 (2022) no. 2, pp. 253-269.

Voir la notice de l'article provenant de la source Heldermann Verlag

The trilinear coordinates of a point V in the plane of a triangle can be permuted in six ways which yields the six permutation points of V. These six points always lie on a single conic, called the permutation conic. A natural variant or generalization seems to be: The six permutation points of V together with the six permutation points of V's image under a certain quadratic Cremona transformation γ comprise a set of twelve points that always lie on a single cubic which we shall call the permutation cubic of V with respect to γ. In the present paper we shall discuss especially the cases where γ is the isogonal or the isotomic conjugation. Properties and remarkable features of these cubics shall be elaborated.
Classification : 14H45, 51N35
Mots-clés : Permutation point, triangle cubic, permutation cubic, triangle center, antiorthic axis, Mandart circumellipse
@article{JGG_2022_26_2_JGG_2022_26_2_a4,
     author = {B. Odehnal },
     title = {From {Permutation} {Points} to {Permutation} {Cubics}},
     journal = {Journal for geometry and graphics},
     pages = {253--269},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a4/}
}
TY  - JOUR
AU  - B. Odehnal 
TI  - From Permutation Points to Permutation Cubics
JO  - Journal for geometry and graphics
PY  - 2022
SP  - 253
EP  - 269
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a4/
ID  - JGG_2022_26_2_JGG_2022_26_2_a4
ER  - 
%0 Journal Article
%A B. Odehnal 
%T From Permutation Points to Permutation Cubics
%J Journal for geometry and graphics
%D 2022
%P 253-269
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a4/
%F JGG_2022_26_2_JGG_2022_26_2_a4
B. Odehnal . From Permutation Points to Permutation Cubics. Journal for geometry and graphics, Tome 26 (2022) no. 2, pp. 253-269. http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a4/