New Properties of Harmonic Polygons
Journal for geometry and graphics, Tome 26 (2022) no. 2, pp. 217-236.

Voir la notice de l'article provenant de la source Heldermann Verlag

Via simulation, we revisit the Poncelet family of �harmonic polygons�, much studied in the 2nd half of the XIX century by famous geometers such as Simmons, Tarry, Neuberg, Casey, and others. We review its (inversive and projective) construction, identify some new conservations, and contrast it, via its invariants, to several other recently studied Poncelet families.
Classification : 51M04, 51N20, 51N35, 68T20
Mots-clés : Harmonic polygon, Poncelet, Brocard, invariants, projection, homothetic, inversion, symmetric polynomials
@article{JGG_2022_26_2_JGG_2022_26_2_a2,
     author = {R. Alves Garcia and D. Reznik and P. Roitman },
     title = {New {Properties} of {Harmonic} {Polygons}},
     journal = {Journal for geometry and graphics},
     pages = {217--236},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a2/}
}
TY  - JOUR
AU  - R. Alves Garcia
AU  - D. Reznik
AU  - P. Roitman 
TI  - New Properties of Harmonic Polygons
JO  - Journal for geometry and graphics
PY  - 2022
SP  - 217
EP  - 236
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a2/
ID  - JGG_2022_26_2_JGG_2022_26_2_a2
ER  - 
%0 Journal Article
%A R. Alves Garcia
%A D. Reznik
%A P. Roitman 
%T New Properties of Harmonic Polygons
%J Journal for geometry and graphics
%D 2022
%P 217-236
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a2/
%F JGG_2022_26_2_JGG_2022_26_2_a2
R. Alves Garcia; D. Reznik; P. Roitman . New Properties of Harmonic Polygons. Journal for geometry and graphics, Tome 26 (2022) no. 2, pp. 217-236. http://geodesic.mathdoc.fr/item/JGG_2022_26_2_JGG_2022_26_2_a2/