How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only
Journal for geometry and graphics, Tome 26 (2022) no. 1, pp. 29-38.

Voir la notice de l'article provenant de la source Heldermann Verlag

Given two convex octahedra in Euclidean 3-space, we find conditions on their natural developments which are necessary and sufficient for these octahedra to be affinely equivalent to each other.
Classification : 52C25, 52B10, 68U05
Mots-clés : Affine transformation, octahedron, natural development, Cayley�Menger determinant, spatial shape of a polyhedron
@article{JGG_2022_26_1_JGG_2022_26_1_a6,
     author = {V. Alexandrov },
     title = {How to {Decide} {Whether} {Two} {Convex} {Octahedra} are {Affinely} {Equivalent} {Using} {Their} {Natural} {Developments} {Only}},
     journal = {Journal for geometry and graphics},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2022},
     url = {http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/}
}
TY  - JOUR
AU  - V. Alexandrov 
TI  - How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only
JO  - Journal for geometry and graphics
PY  - 2022
SP  - 29
EP  - 38
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/
ID  - JGG_2022_26_1_JGG_2022_26_1_a6
ER  - 
%0 Journal Article
%A V. Alexandrov 
%T How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only
%J Journal for geometry and graphics
%D 2022
%P 29-38
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/
%F JGG_2022_26_1_JGG_2022_26_1_a6
V. Alexandrov . How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only. Journal for geometry and graphics, Tome 26 (2022) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/