How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only
Journal for geometry and graphics, Tome 26 (2022) no. 1, pp. 29-38
Cet article a éte moissonné depuis la source Heldermann Verlag
Given two convex octahedra in Euclidean 3-space, we find conditions on their natural developments which are necessary and sufficient for these octahedra to be affinely equivalent to each other.
Classification :
52C25, 52B10, 68U05
Mots-clés : Affine transformation, octahedron, natural development, Cayley�Menger determinant, spatial shape of a polyhedron
Mots-clés : Affine transformation, octahedron, natural development, Cayley�Menger determinant, spatial shape of a polyhedron
@article{JGG_2022_26_1_JGG_2022_26_1_a6,
author = {V. Alexandrov },
title = {How to {Decide} {Whether} {Two} {Convex} {Octahedra} are {Affinely} {Equivalent} {Using} {Their} {Natural} {Developments} {Only}},
journal = {Journal for geometry and graphics},
pages = {29--38},
year = {2022},
volume = {26},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/}
}
TY - JOUR AU - V. Alexandrov TI - How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only JO - Journal for geometry and graphics PY - 2022 SP - 29 EP - 38 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/ ID - JGG_2022_26_1_JGG_2022_26_1_a6 ER -
%0 Journal Article %A V. Alexandrov %T How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only %J Journal for geometry and graphics %D 2022 %P 29-38 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/ %F JGG_2022_26_1_JGG_2022_26_1_a6
V. Alexandrov . How to Decide Whether Two Convex Octahedra are Affinely Equivalent Using Their Natural Developments Only. Journal for geometry and graphics, Tome 26 (2022) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/JGG_2022_26_1_JGG_2022_26_1_a6/