Generalizations of Fagnano's Problem
Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 61-69 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We generalize Fagnano’s famous problem of minimal inscribed perimeter by replacing the orthocenter with an arbitrary interior point P. By adding weights associated with P to Fagnano’s inequality, we show that the new, generalized expression reaches minimum for the pedal triangle of P. We then further generalize our main theorem and derive some extensions by relating them to Fermat-Torricelli problem.
Classification : 51M04, 51M16
Mots-clés : Fagnano's inequality, generalized theorem, extremum problem
@article{JGG_2021_25_1_JGG_2021_25_1_a5,
     author = {T. Q. Hung and N. T. T. Duong},
     title = {Generalizations of {Fagnano's} {Problem}},
     journal = {Journal for geometry and graphics},
     pages = {61--69},
     year = {2021},
     volume = {25},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/}
}
TY  - JOUR
AU  - T. Q. Hung
AU  - N. T. T. Duong
TI  - Generalizations of Fagnano's Problem
JO  - Journal for geometry and graphics
PY  - 2021
SP  - 61
EP  - 69
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/
ID  - JGG_2021_25_1_JGG_2021_25_1_a5
ER  - 
%0 Journal Article
%A T. Q. Hung
%A N. T. T. Duong
%T Generalizations of Fagnano's Problem
%J Journal for geometry and graphics
%D 2021
%P 61-69
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/
%F JGG_2021_25_1_JGG_2021_25_1_a5
T. Q. Hung; N. T. T. Duong. Generalizations of Fagnano's Problem. Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/