Generalizations of Fagnano's Problem
Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 61-69
Cet article a éte moissonné depuis la source Heldermann Verlag
We generalize Fagnano�s famous problem of minimal inscribed perimeter by replacing the orthocenter with an arbitrary interior point P. By adding weights associated with P to Fagnano�s inequality, we show that the new, generalized expression reaches minimum for the pedal triangle of P. We then further generalize our main theorem and derive some extensions by relating them to Fermat-Torricelli problem.
Classification :
51M04, 51M16
Mots-clés : Fagnano's inequality, generalized theorem, extremum problem
Mots-clés : Fagnano's inequality, generalized theorem, extremum problem
@article{JGG_2021_25_1_JGG_2021_25_1_a5,
author = {T. Q. Hung and N. T. T. Duong },
title = {Generalizations of {Fagnano's} {Problem}},
journal = {Journal for geometry and graphics},
pages = {61--69},
year = {2021},
volume = {25},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/}
}
T. Q. Hung; N. T. T. Duong . Generalizations of Fagnano's Problem. Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/