Generalizations of Fagnano's Problem
Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 61-69.

Voir la notice de l'article provenant de la source Heldermann Verlag

We generalize Fagnano�s famous problem of minimal inscribed perimeter by replacing the orthocenter with an arbitrary interior point P. By adding weights associated with P to Fagnano�s inequality, we show that the new, generalized expression reaches minimum for the pedal triangle of P. We then further generalize our main theorem and derive some extensions by relating them to Fermat-Torricelli problem.
Classification : 51M04, 51M16
Mots-clés : Fagnano's inequality, generalized theorem, extremum problem
@article{JGG_2021_25_1_JGG_2021_25_1_a5,
     author = {T. Q. Hung and N. T. T. Duong },
     title = {Generalizations of {Fagnano's} {Problem}},
     journal = {Journal for geometry and graphics},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     url = {http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/}
}
TY  - JOUR
AU  - T. Q. Hung
AU  - N. T. T. Duong 
TI  - Generalizations of Fagnano's Problem
JO  - Journal for geometry and graphics
PY  - 2021
SP  - 61
EP  - 69
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/
ID  - JGG_2021_25_1_JGG_2021_25_1_a5
ER  - 
%0 Journal Article
%A T. Q. Hung
%A N. T. T. Duong 
%T Generalizations of Fagnano's Problem
%J Journal for geometry and graphics
%D 2021
%P 61-69
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/
%F JGG_2021_25_1_JGG_2021_25_1_a5
T. Q. Hung; N. T. T. Duong . Generalizations of Fagnano's Problem. Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a5/