Quadrigon Geometry: Circumscribed Squares and Van Aubel Points
Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 53-59
Cet article a éte moissonné depuis la source Heldermann Verlag
After a brief introduction on the quadrigon formal definition and the Van Aubel configuration, we present the main and original result of this work. The theorem establishes a connection between the Van Aubel configuration of a given quadrigon and the squares circumscribing the quadrigon. In particular, it states that the centers of the circumscribed squares coincide with the Van Aubel points. The proof is developed synthetically. Two different solutions to the problem of circumscribing a square to a given quadrigon are then given. Finally, a curious self-evident corollary regarding the six-point circle and the circumscribed rectangles of the quadrigon is presented.
Classification :
51F20, 51G05, 51M04, 51M15
Mots-clés : quadrigon, circumscribed squares, Van Aubel points, six-point circle
Mots-clés : quadrigon, circumscribed squares, Van Aubel points, six-point circle
@article{JGG_2021_25_1_JGG_2021_25_1_a4,
author = {Ch. van Tienhoven and D. Pellegrinetti },
title = {Quadrigon {Geometry:} {Circumscribed} {Squares} and {Van} {Aubel} {Points}},
journal = {Journal for geometry and graphics},
pages = {53--59},
year = {2021},
volume = {25},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a4/}
}
TY - JOUR AU - Ch. van Tienhoven AU - D. Pellegrinetti TI - Quadrigon Geometry: Circumscribed Squares and Van Aubel Points JO - Journal for geometry and graphics PY - 2021 SP - 53 EP - 59 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a4/ ID - JGG_2021_25_1_JGG_2021_25_1_a4 ER -
Ch. van Tienhoven; D. Pellegrinetti . Quadrigon Geometry: Circumscribed Squares and Van Aubel Points. Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a4/