Space Kinematics and Projective Differential Geometry Over the Ring of Dual Numbers
Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 19-31
Cet article a éte moissonné depuis la source Heldermann Verlag
We study an isomorphism between the group of rigid body displacements and the group of dual quaternions modulo the dual number multiplicative group from the viewpoint of differential geometry in a projective space over the dual numbers. Some seemingly weird phenomena in this space have lucid kinematic interpretations. An example is the existence of non-straight curves with a continuum of osculating tangents which correspond to motions in a cylinder group with osculating vertical Darboux motions. We also suggest geometrically meaningful ways to select osculating conics of a curve in this projective space and illustrate their corresponding motions. Furthermore, we investigate factorizability of these special motions and use the obtained results for the construction of overconstrained linkages.
Classification :
16S36, 53A20, 70B10
Mots-clés : Rational motion, motion polynomial, factorization, vertical Darboux motion, helical motion, osculating line, osculating conic, null cone motion, linkage
Mots-clés : Rational motion, motion polynomial, factorization, vertical Darboux motion, helical motion, osculating line, osculating conic, null cone motion, linkage
@article{JGG_2021_25_1_JGG_2021_25_1_a1,
author = {J. Siegele and M. Pfurner and H.-P. Schr\"ocker },
title = {Space {Kinematics} and {Projective} {Differential} {Geometry} {Over} the {Ring} of {Dual} {Numbers}},
journal = {Journal for geometry and graphics},
pages = {19--31},
year = {2021},
volume = {25},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a1/}
}
TY - JOUR AU - J. Siegele AU - M. Pfurner AU - H.-P. Schröcker TI - Space Kinematics and Projective Differential Geometry Over the Ring of Dual Numbers JO - Journal for geometry and graphics PY - 2021 SP - 19 EP - 31 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a1/ ID - JGG_2021_25_1_JGG_2021_25_1_a1 ER -
%0 Journal Article %A J. Siegele %A M. Pfurner %A H.-P. Schröcker %T Space Kinematics and Projective Differential Geometry Over the Ring of Dual Numbers %J Journal for geometry and graphics %D 2021 %P 19-31 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a1/ %F JGG_2021_25_1_JGG_2021_25_1_a1
J. Siegele; M. Pfurner; H.-P. Schröcker . Space Kinematics and Projective Differential Geometry Over the Ring of Dual Numbers. Journal for geometry and graphics, Tome 25 (2021) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/JGG_2021_25_1_JGG_2021_25_1_a1/