Permutation Ellipses
Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 233-247.

Voir la notice de l'article provenant de la source Heldermann Verlag

We use homogeneous coordinates in the plane of a triangle to define a family of ellipses having the centroid of the triangle as center. The family, which includes the Steiner circumscribed and inscribed ellipses, is closed under many operations, including permutation of coordinates, complements and anticomplements, duality, and inversion.
Classification : 51N20, 51N15
Mots-clés : barycentric coordinates, Steiner circumellipse, Steiner inellipse, complement and anticomplement, dual conic, inversion in ellipse, Fr�gier ellipse
@article{JGG_2020_24_2_JGG_2020_24_2_a7,
     author = {C. Kimberling and P. J. C. Moses },
     title = {Permutation {Ellipses}},
     journal = {Journal for geometry and graphics},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a7/}
}
TY  - JOUR
AU  - C. Kimberling
AU  - P. J. C. Moses 
TI  - Permutation Ellipses
JO  - Journal for geometry and graphics
PY  - 2020
SP  - 233
EP  - 247
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a7/
ID  - JGG_2020_24_2_JGG_2020_24_2_a7
ER  - 
%0 Journal Article
%A C. Kimberling
%A P. J. C. Moses 
%T Permutation Ellipses
%J Journal for geometry and graphics
%D 2020
%P 233-247
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a7/
%F JGG_2020_24_2_JGG_2020_24_2_a7
C. Kimberling; P. J. C. Moses . Permutation Ellipses. Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a7/