The Circumcevian-Inversion Perspector of Two Triangles
Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 217-232.

Voir la notice de l'article provenant de la source Heldermann Verlag

Beginning with a point P in the plane of a triangle ABC, reflections and circumcircle-inversions are used to define a triangle X'Y'Z' that is perspective to ABC. The perspector, denoted by Cip(P), defines a transform, Cip, that is applied to selected curves; e.g., Cip maps the Euler line to itself in a manner well represented by Shinagawa coefficients, and in general Cip maps lines to conics. Barycentric coordinates are used to determine properties of Cip and related points and mappings. Four new equilateral triangles are presented.
Classification : 51N20, 51N15
Mots-clés : Barycentric coordinates, circumcircle, circumcevian, inversion, perspective, Shinagawa coefficients
@article{JGG_2020_24_2_JGG_2020_24_2_a6,
     author = {Suren and P. J. C. Moses and C. Kimberling },
     title = {The {Circumcevian-Inversion} {Perspector} of {Two} {Triangles}},
     journal = {Journal for geometry and graphics},
     pages = {217--232},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a6/}
}
TY  - JOUR
AU  - Suren
AU  - P. J. C. Moses
AU  - C. Kimberling 
TI  - The Circumcevian-Inversion Perspector of Two Triangles
JO  - Journal for geometry and graphics
PY  - 2020
SP  - 217
EP  - 232
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a6/
ID  - JGG_2020_24_2_JGG_2020_24_2_a6
ER  - 
%0 Journal Article
%A Suren
%A P. J. C. Moses
%A C. Kimberling 
%T The Circumcevian-Inversion Perspector of Two Triangles
%J Journal for geometry and graphics
%D 2020
%P 217-232
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a6/
%F JGG_2020_24_2_JGG_2020_24_2_a6
Suren; P. J. C. Moses; C. Kimberling . The Circumcevian-Inversion Perspector of Two Triangles. Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a6/