Geometric Inequalities on Parallelepipeds and Tetrahedra
Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 193-196.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove an inequality comparing the sum of areas of faces of a parallelepiped to its volume. Then we prove an inequality on a tetrahedron analogous to Weitzenb\"ock's Inequality on a triangle using the inequality on a parallelepiped and Yetter's Theorem. We also give a short proof of Yetter's Theorem.
Classification : 51M16, 51M25
Mots-clés : Weitzenboeck's inequality, parallelepiped, tetrahedron, Yetter's Theorem
@article{JGG_2020_24_2_JGG_2020_24_2_a3,
     author = {A. Bailey and H. Katsuura },
     title = {Geometric {Inequalities} on {Parallelepipeds} and {Tetrahedra}},
     journal = {Journal for geometry and graphics},
     pages = {193--196},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a3/}
}
TY  - JOUR
AU  - A. Bailey
AU  - H. Katsuura 
TI  - Geometric Inequalities on Parallelepipeds and Tetrahedra
JO  - Journal for geometry and graphics
PY  - 2020
SP  - 193
EP  - 196
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a3/
ID  - JGG_2020_24_2_JGG_2020_24_2_a3
ER  - 
%0 Journal Article
%A A. Bailey
%A H. Katsuura 
%T Geometric Inequalities on Parallelepipeds and Tetrahedra
%J Journal for geometry and graphics
%D 2020
%P 193-196
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a3/
%F JGG_2020_24_2_JGG_2020_24_2_a3
A. Bailey; H. Katsuura . Geometric Inequalities on Parallelepipeds and Tetrahedra. Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 193-196. http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a3/