Geometric Inequalities on Parallelepipeds and Tetrahedra
Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 193-196
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove an inequality comparing the sum of areas of faces of a parallelepiped to its volume. Then we prove an inequality on a tetrahedron analogous to Weitzenb\"ock's Inequality on a triangle using the inequality on a parallelepiped and Yetter's Theorem. We also give a short proof of Yetter's Theorem.
Classification :
51M16, 51M25
Mots-clés : Weitzenboeck's inequality, parallelepiped, tetrahedron, Yetter's Theorem
Mots-clés : Weitzenboeck's inequality, parallelepiped, tetrahedron, Yetter's Theorem
@article{JGG_2020_24_2_JGG_2020_24_2_a3,
author = {A. Bailey and H. Katsuura },
title = {Geometric {Inequalities} on {Parallelepipeds} and {Tetrahedra}},
journal = {Journal for geometry and graphics},
pages = {193--196},
year = {2020},
volume = {24},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a3/}
}
A. Bailey; H. Katsuura . Geometric Inequalities on Parallelepipeds and Tetrahedra. Journal for geometry and graphics, Tome 24 (2020) no. 2, pp. 193-196. http://geodesic.mathdoc.fr/item/JGG_2020_24_2_JGG_2020_24_2_a3/