A Generalization of Desargues' Involution Theorem
Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 65-72.

Voir la notice de l'article provenant de la source Heldermann Verlag

This paper states and proves a generalization of the well-known Desargues' Involution Theorem from plane projective geometry.
Classification : 51N15, 15A63, 51A05
Mots-clés : Desargues' Involution Theorem, generalization, quadrics, symmetric bilinear forms, projective line
@article{JGG_2020_24_1_JGG_2020_24_1_a5,
     author = {N. P. Nguyen },
     title = {A {Generalization} of {Desargues'} {Involution} {Theorem}},
     journal = {Journal for geometry and graphics},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     url = {http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a5/}
}
TY  - JOUR
AU  - N. P. Nguyen 
TI  - A Generalization of Desargues' Involution Theorem
JO  - Journal for geometry and graphics
PY  - 2020
SP  - 65
EP  - 72
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a5/
ID  - JGG_2020_24_1_JGG_2020_24_1_a5
ER  - 
%0 Journal Article
%A N. P. Nguyen 
%T A Generalization of Desargues' Involution Theorem
%J Journal for geometry and graphics
%D 2020
%P 65-72
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a5/
%F JGG_2020_24_1_JGG_2020_24_1_a5
N. P. Nguyen . A Generalization of Desargues' Involution Theorem. Journal for geometry and graphics, Tome 24 (2020) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/JGG_2020_24_1_JGG_2020_24_1_a5/