On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex
Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 183-187
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove the existence and uniqueness of a triangle with given lengths of two angle bisectors and the cevian from the third angle vertex (bisector, altitude and median). The results can be used in solving problems of computer graphics, architecture and other fields which include the construction of triangles with given elements.
Classification :
51M05, 51M16
Mots-clés : Triangle, angle bisector, geometry inequalities
Mots-clés : Triangle, angle bisector, geometry inequalities
@article{JGG_2019_23_2_JGG_2019_23_2_a4,
author = {V. Oxman },
title = {On the {Existence} of {Triangles} with {Given} {Lengths} of {Two} {Angle} {Bisectors} and of the {Cevian} from the {Third} {Angle} {Vertex}},
journal = {Journal for geometry and graphics},
pages = {183--187},
year = {2019},
volume = {23},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/}
}
TY - JOUR AU - V. Oxman TI - On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex JO - Journal for geometry and graphics PY - 2019 SP - 183 EP - 187 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/ ID - JGG_2019_23_2_JGG_2019_23_2_a4 ER -
%0 Journal Article %A V. Oxman %T On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex %J Journal for geometry and graphics %D 2019 %P 183-187 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/ %F JGG_2019_23_2_JGG_2019_23_2_a4
V. Oxman . On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex. Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 183-187. http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/