On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex
Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 183-187.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove the existence and uniqueness of a triangle with given lengths of two angle bisectors and the cevian from the third angle vertex (bisector, altitude and median). The results can be used in solving problems of computer graphics, architecture and other fields which include the construction of triangles with given elements.
Classification : 51M05, 51M16
Mots-clés : Triangle, angle bisector, geometry inequalities
@article{JGG_2019_23_2_JGG_2019_23_2_a4,
     author = {V. Oxman },
     title = {On the {Existence} of {Triangles} with {Given} {Lengths} of {Two} {Angle} {Bisectors} and of the {Cevian} from the {Third} {Angle} {Vertex}},
     journal = {Journal for geometry and graphics},
     pages = {183--187},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/}
}
TY  - JOUR
AU  - V. Oxman 
TI  - On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex
JO  - Journal for geometry and graphics
PY  - 2019
SP  - 183
EP  - 187
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/
ID  - JGG_2019_23_2_JGG_2019_23_2_a4
ER  - 
%0 Journal Article
%A V. Oxman 
%T On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex
%J Journal for geometry and graphics
%D 2019
%P 183-187
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/
%F JGG_2019_23_2_JGG_2019_23_2_a4
V. Oxman . On the Existence of Triangles with Given Lengths of Two Angle Bisectors and of the Cevian from the Third Angle Vertex. Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 183-187. http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a4/