The Theorem of Gallucci Revisited
Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 167-178.

Voir la notice de l'article provenant de la source Heldermann Verlag

We propose a well-justified synthetic approach to the projective space. We define the concepts of plane and space of incidence and also the statement of Gallucci as an axiom of our classical projective space. For this purpose, we deduce from our axioms the theorems of Desargues, Pappus, and the fundamental theorem of projectivities. Our approach does not use any information about analytical projective geometry like the concept of cross-ratios and homogeneous coordinates of points.
Classification : 51A05, 51A20, 51A30
Mots-clés : Desargues theorem, Gallucci's axiom, Pappus axiom, projective space
@article{JGG_2019_23_2_JGG_2019_23_2_a2,
     author = {A. G. Horv\'ath },
     title = {The {Theorem} of {Gallucci} {Revisited}},
     journal = {Journal for geometry and graphics},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a2/}
}
TY  - JOUR
AU  - A. G. Horváth 
TI  - The Theorem of Gallucci Revisited
JO  - Journal for geometry and graphics
PY  - 2019
SP  - 167
EP  - 178
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a2/
ID  - JGG_2019_23_2_JGG_2019_23_2_a2
ER  - 
%0 Journal Article
%A A. G. Horváth 
%T The Theorem of Gallucci Revisited
%J Journal for geometry and graphics
%D 2019
%P 167-178
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a2/
%F JGG_2019_23_2_JGG_2019_23_2_a2
A. G. Horváth . The Theorem of Gallucci Revisited. Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a2/