Euclidean Realizations of Triangulated Polyhedra
Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 157-165.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $C=(d_0,\ldots,d_n)$ be an admissible degree sequence for a triangulated polyhedron $P_n$ with $n+1$ vertices. We give necessary and sufficient conditions on its Euclidean parameters (angles, lenghts, $\ldots$) for beeing realized in the usual 3D-space.
Classification : 52B05, 51N20, 52-04
Mots-clés : Polyhedron, combinatorics, triangulation, Euclidean parameters, quaternions
@article{JGG_2019_23_2_JGG_2019_23_2_a1,
     author = {P. Honvault },
     title = {Euclidean {Realizations} of {Triangulated} {Polyhedra}},
     journal = {Journal for geometry and graphics},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a1/}
}
TY  - JOUR
AU  - P. Honvault 
TI  - Euclidean Realizations of Triangulated Polyhedra
JO  - Journal for geometry and graphics
PY  - 2019
SP  - 157
EP  - 165
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a1/
ID  - JGG_2019_23_2_JGG_2019_23_2_a1
ER  - 
%0 Journal Article
%A P. Honvault 
%T Euclidean Realizations of Triangulated Polyhedra
%J Journal for geometry and graphics
%D 2019
%P 157-165
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a1/
%F JGG_2019_23_2_JGG_2019_23_2_a1
P. Honvault . Euclidean Realizations of Triangulated Polyhedra. Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 157-165. http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a1/