A Spatial Version of the Theorem of the Angle of Circumference
Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 147-156.

Voir la notice de l'article provenant de la source Heldermann Verlag

The presented spatial version of the theorem of the angle of circumference in three-dimensional Euclidean space deals with pairs of planes $(\epsilon,\phi)$ passing through two skew straight lines $e$ and $f$, respectively, such that the angle $\alpha$ enclosed by $\epsilon$ and $\phi$ is constant. It turns out that the set of intersection lines $r = \eps\cap\phi$ is a quartic ruled surface $\Phi$ with $e\cup f$ being its double curve. We analyse the properties of $\Phi$ and discuss the special cases showing up for special values of some shape parameters such as the slope of $e$ and $f$ (with respect to a fixed plane) or the angle $\alpha$.
Classification : 51N20, 51N35, 51M30, 14J16
Mots-clés : Ruled surface, angle of circumference, quartic ruled surface, Thaloid, isoptic surface
@article{JGG_2019_23_2_JGG_2019_23_2_a0,
     author = {G. Glaeser and B. Odehnal and H. Stachel },
     title = {A {Spatial} {Version} of the {Theorem} of the {Angle} of {Circumference}},
     journal = {Journal for geometry and graphics},
     pages = {147--156},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2019},
     url = {http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a0/}
}
TY  - JOUR
AU  - G. Glaeser
AU  - B. Odehnal
AU  - H. Stachel 
TI  - A Spatial Version of the Theorem of the Angle of Circumference
JO  - Journal for geometry and graphics
PY  - 2019
SP  - 147
EP  - 156
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a0/
ID  - JGG_2019_23_2_JGG_2019_23_2_a0
ER  - 
%0 Journal Article
%A G. Glaeser
%A B. Odehnal
%A H. Stachel 
%T A Spatial Version of the Theorem of the Angle of Circumference
%J Journal for geometry and graphics
%D 2019
%P 147-156
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a0/
%F JGG_2019_23_2_JGG_2019_23_2_a0
G. Glaeser; B. Odehnal; H. Stachel . A Spatial Version of the Theorem of the Angle of Circumference. Journal for geometry and graphics, Tome 23 (2019) no. 2, pp. 147-156. http://geodesic.mathdoc.fr/item/JGG_2019_23_2_JGG_2019_23_2_a0/