Characterization of an Isosceles Tetrahedron
Journal for geometry and graphics, Tome 23 (2019) no. 1, pp. 37-4.

Voir la notice de l'article provenant de la source Heldermann Verlag

A tetrahedron in which each edge is equal to its opposite is an {isosceles} tetrahedron. We will use vectors to prove the following statement: A tetrahedron OABC is isosceles if, and only if the centroid of the parallelepiped defined by the three edges OA, OB, and OC is an ex-center of the tetrahedron OABC.
Classification : 52B10, 51M04, 51N20
Mots-clés : Isosceles tetrahedron, in-center, ex-center, centroid, circum-center
@article{JGG_2019_23_1_JGG_2019_23_1_a3,
     author = {H. Katsuura },
     title = {Characterization of an {Isosceles} {Tetrahedron}},
     journal = {Journal for geometry and graphics},
     pages = {37--4},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     url = {http://geodesic.mathdoc.fr/item/JGG_2019_23_1_JGG_2019_23_1_a3/}
}
TY  - JOUR
AU  - H. Katsuura 
TI  - Characterization of an Isosceles Tetrahedron
JO  - Journal for geometry and graphics
PY  - 2019
SP  - 37
EP  - 4
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2019_23_1_JGG_2019_23_1_a3/
ID  - JGG_2019_23_1_JGG_2019_23_1_a3
ER  - 
%0 Journal Article
%A H. Katsuura 
%T Characterization of an Isosceles Tetrahedron
%J Journal for geometry and graphics
%D 2019
%P 37-4
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2019_23_1_JGG_2019_23_1_a3/
%F JGG_2019_23_1_JGG_2019_23_1_a3
H. Katsuura . Characterization of an Isosceles Tetrahedron. Journal for geometry and graphics, Tome 23 (2019) no. 1, pp. 37-4. http://geodesic.mathdoc.fr/item/JGG_2019_23_1_JGG_2019_23_1_a3/