Packing Three Cubes in 8-Dimensional Space
Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 245-251
Cet article a éte moissonné depuis la source Heldermann Verlag
Let Vn(d) denote the least number such that every system of n cubes with total volume 1 in the d-dimensional (Euclidean) space can be packed into some rectangular parallelepiped of volume Vn(d). In this paper two new results can be found: V2(8) and V3(8).
Classification :
52C17
Mots-clés : Packing of cubes, extreme
Mots-clés : Packing of cubes, extreme
@article{JGG_2018_22_2_JGG_2018_22_2_a7,
author = {Z. Sedliackov\'a },
title = {Packing {Three} {Cubes} in {8-Dimensional} {Space}},
journal = {Journal for geometry and graphics},
pages = {245--251},
year = {2018},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a7/}
}
Z. Sedliacková . Packing Three Cubes in 8-Dimensional Space. Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a7/