Packing Three Cubes in 8-Dimensional Space
Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 245-251.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let Vn(d) denote the least number such that every system of n cubes with total volume 1 in the d-dimensional (Euclidean) space can be packed into some rectangular parallelepiped of volume Vn(d). In this paper two new results can be found: V2(8) and V3(8).
Classification : 52C17
Mots-clés : Packing of cubes, extreme
@article{JGG_2018_22_2_JGG_2018_22_2_a7,
     author = {Z. Sedliackov\'a },
     title = {Packing {Three} {Cubes} in {8-Dimensional} {Space}},
     journal = {Journal for geometry and graphics},
     pages = {245--251},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a7/}
}
TY  - JOUR
AU  - Z. Sedliacková 
TI  - Packing Three Cubes in 8-Dimensional Space
JO  - Journal for geometry and graphics
PY  - 2018
SP  - 245
EP  - 251
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a7/
ID  - JGG_2018_22_2_JGG_2018_22_2_a7
ER  - 
%0 Journal Article
%A Z. Sedliacková 
%T Packing Three Cubes in 8-Dimensional Space
%J Journal for geometry and graphics
%D 2018
%P 245-251
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a7/
%F JGG_2018_22_2_JGG_2018_22_2_a7
Z. Sedliacková . Packing Three Cubes in 8-Dimensional Space. Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a7/