A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron
Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 195-205
Cet article a éte moissonné depuis la source Heldermann Verlag
By elementary arguments of linear algebra and vector algebra we give here a proof of Pohlke's fundamental theorem on oblique axonometry. We also present explicit formulae for the reference trihedrons (Pohlke matrices) and the corresponding directions of projection.
Classification :
51N10, 51N05
Mots-clés : Pohlke's theorem, oblique axonometry
Mots-clés : Pohlke's theorem, oblique axonometry
@article{JGG_2018_22_2_JGG_2018_22_2_a3,
author = {R. Manfrin },
title = {A {Proof} of {Pohlke's} {Theorem} with an {Analytic} {Determination} of the {Reference} {Trihedron}},
journal = {Journal for geometry and graphics},
pages = {195--205},
year = {2018},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/}
}
TY - JOUR AU - R. Manfrin TI - A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron JO - Journal for geometry and graphics PY - 2018 SP - 195 EP - 205 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/ ID - JGG_2018_22_2_JGG_2018_22_2_a3 ER -
R. Manfrin . A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron. Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 195-205. http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/