A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron
Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 195-205.

Voir la notice de l'article provenant de la source Heldermann Verlag

By elementary arguments of linear algebra and vector algebra we give here a proof of Pohlke's fundamental theorem on oblique axonometry. We also present explicit formulae for the reference trihedrons (Pohlke matrices) and the corresponding directions of projection.
Classification : 51N10, 51N05
Mots-clés : Pohlke's theorem, oblique axonometry
@article{JGG_2018_22_2_JGG_2018_22_2_a3,
     author = {R. Manfrin },
     title = {A {Proof} of {Pohlke's} {Theorem} with an {Analytic} {Determination} of the {Reference} {Trihedron}},
     journal = {Journal for geometry and graphics},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/}
}
TY  - JOUR
AU  - R. Manfrin 
TI  - A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron
JO  - Journal for geometry and graphics
PY  - 2018
SP  - 195
EP  - 205
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/
ID  - JGG_2018_22_2_JGG_2018_22_2_a3
ER  - 
%0 Journal Article
%A R. Manfrin 
%T A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron
%J Journal for geometry and graphics
%D 2018
%P 195-205
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/
%F JGG_2018_22_2_JGG_2018_22_2_a3
R. Manfrin . A Proof of Pohlke's Theorem with an Analytic Determination of the Reference Trihedron. Journal for geometry and graphics, Tome 22 (2018) no. 2, pp. 195-205. http://geodesic.mathdoc.fr/item/JGG_2018_22_2_JGG_2018_22_2_a3/