To the Volumes Theory of a Hyperbolic Space of Positive Curvature
Journal for geometry and graphics, Tome 22 (2018) no. 1, pp. 67-86.

Voir la notice de l'article provenant de la source Heldermann Verlag

In the Cayley-Klein model a hyperbolic space H3 of positive curvature is realized on the ideal domain of the Lobachevskii space, that is, on the exterior domain of the projective space P3 with respect to an oval surface. In this paper the basic notions of the volumes theory of the space H3 are introduced through projective invariants of the fundamental group of this space. The volume formulae for a monopolar tetrahedron and bodies bounded by a hypersphere of the space H3 are obtained.
Classification : 51F10, 14Q10, 51M25
Mots-clés : Cayley-Klein model, hyperbolic space of positive curvature, volume, monopolar tetrahedron
@article{JGG_2018_22_1_JGG_2018_22_1_a7,
     author = {L. Romakina },
     title = {To the {Volumes} {Theory} of a {Hyperbolic} {Space} of {Positive} {Curvature}},
     journal = {Journal for geometry and graphics},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a7/}
}
TY  - JOUR
AU  - L. Romakina 
TI  - To the Volumes Theory of a Hyperbolic Space of Positive Curvature
JO  - Journal for geometry and graphics
PY  - 2018
SP  - 67
EP  - 86
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a7/
ID  - JGG_2018_22_1_JGG_2018_22_1_a7
ER  - 
%0 Journal Article
%A L. Romakina 
%T To the Volumes Theory of a Hyperbolic Space of Positive Curvature
%J Journal for geometry and graphics
%D 2018
%P 67-86
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a7/
%F JGG_2018_22_1_JGG_2018_22_1_a7
L. Romakina . To the Volumes Theory of a Hyperbolic Space of Positive Curvature. Journal for geometry and graphics, Tome 22 (2018) no. 1, pp. 67-86. http://geodesic.mathdoc.fr/item/JGG_2018_22_1_JGG_2018_22_1_a7/