Singular Fregier Conics in Non-Euclidean Geometry
Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 201-208
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

The hypotenuses of all right triangles inscribed into a fixed conic C with fixed right-angle vertex p are incident with the Frégier point f to p and C. As p varies on the conic, the locus of the Frégier point is, in general, a conic as well. We study conics C whose Frégier locus is singular in Euclidean, elliptic and hyperbolic geometry. The richest variety of conics with this property is obtained in hyperbolic plane while in elliptic geometry only three families of conics have a singular Frégier locus.
Classification : 51M04, 51M09, 51N35
Mots-clés : Fregier point, Fregier conic, Thales' theorem, hyperbolic geometry, elliptic geometry, singular conic
@article{JGG_2017_21_2_JGG_2017_21_2_a5,
     author = {H.-P. Schroecker},
     title = {Singular {Fregier} {Conics} in {Non-Euclidean} {Geometry}},
     journal = {Journal for geometry and graphics},
     pages = {201--208},
     year = {2017},
     volume = {21},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a5/}
}
TY  - JOUR
AU  - H.-P. Schroecker
TI  - Singular Fregier Conics in Non-Euclidean Geometry
JO  - Journal for geometry and graphics
PY  - 2017
SP  - 201
EP  - 208
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a5/
ID  - JGG_2017_21_2_JGG_2017_21_2_a5
ER  - 
%0 Journal Article
%A H.-P. Schroecker
%T Singular Fregier Conics in Non-Euclidean Geometry
%J Journal for geometry and graphics
%D 2017
%P 201-208
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a5/
%F JGG_2017_21_2_JGG_2017_21_2_a5
H.-P. Schroecker. Singular Fregier Conics in Non-Euclidean Geometry. Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 201-208. http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a5/