Curved Folding with Pairs of Cylinders
Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 193-2.

Voir la notice de l'article provenant de la source Heldermann Verlag

On a sheet of paper we consider a curve c*(s). 'Curved paper folding' or 'curved Origami' along c*(s) folded from the planar sheet yields a spatial curve c(s) and two developable strips f1 and f2 through that curve. We examine the very special case where these two surfaces are cylinders with generators given by direction vectors e1 and e2. In this paper we prove the following properties and statements:
Classification : 53A05, 51N05, 68U07
Mots-clés : Curved origami, curved folding, geodesic curvature, origami with pairs of cylinders
@article{JGG_2017_21_2_JGG_2017_21_2_a4,
     author = {O. Roeschel },
     title = {Curved {Folding} with {Pairs} of {Cylinders}},
     journal = {Journal for geometry and graphics},
     pages = {193--2},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a4/}
}
TY  - JOUR
AU  - O. Roeschel 
TI  - Curved Folding with Pairs of Cylinders
JO  - Journal for geometry and graphics
PY  - 2017
SP  - 193
EP  - 2
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a4/
ID  - JGG_2017_21_2_JGG_2017_21_2_a4
ER  - 
%0 Journal Article
%A O. Roeschel 
%T Curved Folding with Pairs of Cylinders
%J Journal for geometry and graphics
%D 2017
%P 193-2
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a4/
%F JGG_2017_21_2_JGG_2017_21_2_a4
O. Roeschel . Curved Folding with Pairs of Cylinders. Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 193-2. http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a4/