Iterated Routh's Triangles
Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 153-168.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a series of iterated Routh's triangles. In a general deterministic case we find the limit point of the sequence. We discuss a representation of the limit as a fixed point of a 3-dimensional affine transformation and a curious interpretation of the iterative process as a 3-person job allocation procedure. For a random sequence of iterations, we show that the expected value of the limiting point is the centroid of the original triangle.
Classification : 51M04, 51N10, 60D05, 15B51
Mots-clés : Routh's triangles, Ceva's theorem, random iterations, job allocation procedure
@article{JGG_2017_21_2_JGG_2017_21_2_a1,
     author = {E. Carroll and A. P. Ghosh and X. H. Nguyen and A. Roitershtein },
     title = {Iterated {Routh's} {Triangles}},
     journal = {Journal for geometry and graphics},
     pages = {153--168},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/}
}
TY  - JOUR
AU  - E. Carroll
AU  - A. P. Ghosh
AU  - X. H. Nguyen
AU  - A. Roitershtein 
TI  - Iterated Routh's Triangles
JO  - Journal for geometry and graphics
PY  - 2017
SP  - 153
EP  - 168
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/
ID  - JGG_2017_21_2_JGG_2017_21_2_a1
ER  - 
%0 Journal Article
%A E. Carroll
%A A. P. Ghosh
%A X. H. Nguyen
%A A. Roitershtein 
%T Iterated Routh's Triangles
%J Journal for geometry and graphics
%D 2017
%P 153-168
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/
%F JGG_2017_21_2_JGG_2017_21_2_a1
E. Carroll; A. P. Ghosh; X. H. Nguyen; A. Roitershtein . Iterated Routh's Triangles. Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 153-168. http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/