Iterated Routh's Triangles
Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 153-168
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider a series of iterated Routh's triangles. In a general deterministic case we find the limit point of the sequence. We discuss a representation of the limit as a fixed point of a 3-dimensional affine transformation and a curious interpretation of the iterative process as a 3-person job allocation procedure. For a random sequence of iterations, we show that the expected value of the limiting point is the centroid of the original triangle.
Classification :
51M04, 51N10, 60D05, 15B51
Mots-clés : Routh's triangles, Ceva's theorem, random iterations, job allocation procedure
Mots-clés : Routh's triangles, Ceva's theorem, random iterations, job allocation procedure
@article{JGG_2017_21_2_JGG_2017_21_2_a1,
author = {E. Carroll and A. P. Ghosh and X. H. Nguyen and A. Roitershtein },
title = {Iterated {Routh's} {Triangles}},
journal = {Journal for geometry and graphics},
pages = {153--168},
year = {2017},
volume = {21},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/}
}
TY - JOUR AU - E. Carroll AU - A. P. Ghosh AU - X. H. Nguyen AU - A. Roitershtein TI - Iterated Routh's Triangles JO - Journal for geometry and graphics PY - 2017 SP - 153 EP - 168 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/ ID - JGG_2017_21_2_JGG_2017_21_2_a1 ER -
E. Carroll; A. P. Ghosh; X. H. Nguyen; A. Roitershtein . Iterated Routh's Triangles. Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 153-168. http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a1/