Simplicial Surfaces Controlled by One Triangle
Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 141-152
Cet article a éte moissonné depuis la source Heldermann Verlag
Embeddings of combinatorial closed simplicial surfaces in Euclidean 3-space with all triangles congruent to one control triangle are investigated, where the control triangle may vary. Definitions and general methods for construction and classification are outlined. For one infinite family of combinatorial surfaces its dihedral symmetry is used to construct all embeddings and to characterize the possible congruence classes of the control triangle. The investigation is motivated by problems in rigid origami.
Classification :
52B10, 51M20, 52B15
Mots-clés : Simplicial surfaces, polytopes, moduli spaces, origami, tesselations, symmetry
Mots-clés : Simplicial surfaces, polytopes, moduli spaces, origami, tesselations, symmetry
@article{JGG_2017_21_2_JGG_2017_21_2_a0,
author = {K.-H. Brakhage and A. C. Niemeyer and W. Plesken and A. Strzelczyk },
title = {Simplicial {Surfaces} {Controlled} by {One} {Triangle}},
journal = {Journal for geometry and graphics},
pages = {141--152},
year = {2017},
volume = {21},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/}
}
TY - JOUR AU - K.-H. Brakhage AU - A. C. Niemeyer AU - W. Plesken AU - A. Strzelczyk TI - Simplicial Surfaces Controlled by One Triangle JO - Journal for geometry and graphics PY - 2017 SP - 141 EP - 152 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/ ID - JGG_2017_21_2_JGG_2017_21_2_a0 ER -
%0 Journal Article %A K.-H. Brakhage %A A. C. Niemeyer %A W. Plesken %A A. Strzelczyk %T Simplicial Surfaces Controlled by One Triangle %J Journal for geometry and graphics %D 2017 %P 141-152 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/ %F JGG_2017_21_2_JGG_2017_21_2_a0
K.-H. Brakhage; A. C. Niemeyer; W. Plesken; A. Strzelczyk . Simplicial Surfaces Controlled by One Triangle. Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 141-152. http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/