Simplicial Surfaces Controlled by One Triangle
Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 141-152.

Voir la notice de l'article provenant de la source Heldermann Verlag

Embeddings of combinatorial closed simplicial surfaces in Euclidean 3-space with all triangles congruent to one control triangle are investigated, where the control triangle may vary. Definitions and general methods for construction and classification are outlined. For one infinite family of combinatorial surfaces its dihedral symmetry is used to construct all embeddings and to characterize the possible congruence classes of the control triangle. The investigation is motivated by problems in rigid origami.
Classification : 52B10, 51M20, 52B15
Mots-clés : Simplicial surfaces, polytopes, moduli spaces, origami, tesselations, symmetry
@article{JGG_2017_21_2_JGG_2017_21_2_a0,
     author = {K.-H. Brakhage and A. C. Niemeyer and W. Plesken and A. Strzelczyk },
     title = {Simplicial {Surfaces} {Controlled} by {One} {Triangle}},
     journal = {Journal for geometry and graphics},
     pages = {141--152},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/}
}
TY  - JOUR
AU  - K.-H. Brakhage
AU  - A. C. Niemeyer
AU  - W. Plesken
AU  - A. Strzelczyk 
TI  - Simplicial Surfaces Controlled by One Triangle
JO  - Journal for geometry and graphics
PY  - 2017
SP  - 141
EP  - 152
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/
ID  - JGG_2017_21_2_JGG_2017_21_2_a0
ER  - 
%0 Journal Article
%A K.-H. Brakhage
%A A. C. Niemeyer
%A W. Plesken
%A A. Strzelczyk 
%T Simplicial Surfaces Controlled by One Triangle
%J Journal for geometry and graphics
%D 2017
%P 141-152
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/
%F JGG_2017_21_2_JGG_2017_21_2_a0
K.-H. Brakhage; A. C. Niemeyer; W. Plesken; A. Strzelczyk . Simplicial Surfaces Controlled by One Triangle. Journal for geometry and graphics, Tome 21 (2017) no. 2, pp. 141-152. http://geodesic.mathdoc.fr/item/JGG_2017_21_2_JGG_2017_21_2_a0/