Projective Proof and Generalization of Chasles's Theorem Along Non-Torsal Lines
Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 243-251
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove Chasles's theorem for non-developable ruled surfaces, originally published in 1839, and generalize it to higher-dimensional projective extensions of the real space for the first polars along non-torsal lines. We avoid the use of differential geometry and re-prove the theorem strictly projectively, using only incidence properties for surfaces of higher degree.
Classification :
51A05, 51N15, 51N35, 14J26
Mots-clés : Chasles's theorem, ruled surface, projective methods, polar surface
Mots-clés : Chasles's theorem, ruled surface, projective methods, polar surface
@article{JGG_2016_20_2_JGG_2016_20_2_a6,
author = {M. Zamboj },
title = {Projective {Proof} and {Generalization} of {Chasles's} {Theorem} {Along} {Non-Torsal} {Lines}},
journal = {Journal for geometry and graphics},
pages = {243--251},
year = {2016},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a6/}
}
TY - JOUR AU - M. Zamboj TI - Projective Proof and Generalization of Chasles's Theorem Along Non-Torsal Lines JO - Journal for geometry and graphics PY - 2016 SP - 243 EP - 251 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a6/ ID - JGG_2016_20_2_JGG_2016_20_2_a6 ER -
M. Zamboj . Projective Proof and Generalization of Chasles's Theorem Along Non-Torsal Lines. Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a6/