Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature
Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 209-224
Cet article a éte moissonné depuis la source Heldermann Verlag
In the Cayley-Klein model, a Lobachevskii plane Λ2 is realized in the projective plane P2 in the interior of an oval curve. A hyperbolic plane H of positive curvature is realized in the ideal domain of the Lobachevskii plane. We study here trajectories of the midpoint of a segment with its endpoints running along two orthogonal lines intersecting in H. Such trajectories are called Svetlana Ribbons. We prove that Cassini Ovals of the Euclidean plane can be images of Svetlana Ribbons with intersecting axes.
Classification :
51N25, 53A17, 51F05, 51N35, 97G50
Mots-clés : Lobachevskii plane, hyperbolic plane of positive curvature, Svetlana Ribbon, Cassini Oval
Mots-clés : Lobachevskii plane, hyperbolic plane of positive curvature, Svetlana Ribbon, Cassini Oval
@article{JGG_2016_20_2_JGG_2016_20_2_a4,
author = {L. Romakina },
title = {Svetlana {Ribbons} with {Intersecting} {Axes} in a {Hyperbolic} {Plane} of {Positive} {Curvature}},
journal = {Journal for geometry and graphics},
pages = {209--224},
year = {2016},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/}
}
TY - JOUR AU - L. Romakina TI - Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature JO - Journal for geometry and graphics PY - 2016 SP - 209 EP - 224 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/ ID - JGG_2016_20_2_JGG_2016_20_2_a4 ER -
L. Romakina . Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature. Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/