Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature
Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 209-224.

Voir la notice de l'article provenant de la source Heldermann Verlag

In the Cayley-Klein model, a Lobachevskii plane Λ2 is realized in the projective plane P2 in the interior of an oval curve. A hyperbolic plane H of positive curvature is realized in the ideal domain of the Lobachevskii plane. We study here trajectories of the midpoint of a segment with its endpoints running along two orthogonal lines intersecting in H. Such trajectories are called Svetlana Ribbons. We prove that Cassini Ovals of the Euclidean plane can be images of Svetlana Ribbons with intersecting axes.
Classification : 51N25, 53A17, 51F05, 51N35, 97G50
Mots-clés : Lobachevskii plane, hyperbolic plane of positive curvature, Svetlana Ribbon, Cassini Oval
@article{JGG_2016_20_2_JGG_2016_20_2_a4,
     author = {L. Romakina },
     title = {Svetlana {Ribbons} with {Intersecting} {Axes} in a {Hyperbolic} {Plane} of {Positive} {Curvature}},
     journal = {Journal for geometry and graphics},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     url = {http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/}
}
TY  - JOUR
AU  - L. Romakina 
TI  - Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature
JO  - Journal for geometry and graphics
PY  - 2016
SP  - 209
EP  - 224
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/
ID  - JGG_2016_20_2_JGG_2016_20_2_a4
ER  - 
%0 Journal Article
%A L. Romakina 
%T Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature
%J Journal for geometry and graphics
%D 2016
%P 209-224
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/
%F JGG_2016_20_2_JGG_2016_20_2_a4
L. Romakina . Svetlana Ribbons with Intersecting Axes in a Hyperbolic Plane of Positive Curvature. Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a4/