On the Equality of Cevians: Beyond the Steiner-Lehmus Theorem
Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 185-207
Cet article a éte moissonné depuis la source Heldermann Verlag
The aim of the present work is to investigate the relations in a triangle in order to have two cevians equal, given the fact that they intersect in a point of a third cevian. Obviously the Steiner Lehmus theorem deals with the specific case of cevians being angle-bisectors. All possible combinations of external or internal cevians, plus the possibilities of equicevian points are examined.
Classification :
51M04
Mots-clés : Cevians, A-equicevian points, equicevian points, Steiner-Lehmus Theorem
Mots-clés : Cevians, A-equicevian points, equicevian points, Steiner-Lehmus Theorem
@article{JGG_2016_20_2_JGG_2016_20_2_a3,
author = {K. Myrianthis },
title = {On the {Equality} of {Cevians:} {Beyond} the {Steiner-Lehmus} {Theorem}},
journal = {Journal for geometry and graphics},
pages = {185--207},
year = {2016},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a3/}
}
K. Myrianthis . On the Equality of Cevians: Beyond the Steiner-Lehmus Theorem. Journal for geometry and graphics, Tome 20 (2016) no. 2, pp. 185-207. http://geodesic.mathdoc.fr/item/JGG_2016_20_2_JGG_2016_20_2_a3/